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A numerical method is described for the solution of the following quench front problem: 
Find u(x, y) and v  such that 

&k(u):+ vq(u)$+ -+g;= 0, 

au 
ay~,~o=fw’ 

au 
av y=, = 0, 

4-m Y) = 0, 
u(+ca, Y) = 1. 

The method is based on the idea of isotherm migration. The resulting problem is an eigenvalue 
problem for a system of nonlinear Cauchy-Riemann equations. The method is very efficient 
in comparison with previous methods for this problem. 

1. INTR~O~JCTI~N 

Emergency core cooling systems for water-cooled reactors bring about a cooling of 
the hot reactor core by flooding with water from the bottom or spraying with water 
from the top. The surface to be cooled will be at a temperature well above that of 
boiling water. At this temperature water cannot stay in contact with the surface; a 
film of steam forms which insulates the surface from further cooling. The surface 
does cool down, however; a front forms which moves into the hot region. Behind the 
front the surface is cool and in contact with the water; ahead of the front it is hot and 
dry. This front is called a quench front or rewetting front. The mechanism for the 
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propagation of this front is the flow of heat along the temperature gradient on the 
surface. 

The mathematical model [8] of this process, in the case of a liquid film rewetting a 
hot plate, is, after nondimensionalization, the following initial boundary value 
problem 

au a*u a*u -=7+- at ax a2 ’ u(x, y, 0) given. 

The boundary conditions are 

&A 

av y=1 
=o 

at the insulated boundary, y = 1, and 

&l 

5 y=o=f(u) 

at the conducting boundary, y = 0. The function f(u) is to be specified. In addition 

u(--co, Y, t) = 0, 

u(+co, y, t) = 1. 

What are of interest in this problem are plane traveling wave solutions, solutions of 
the form 

u = u(x - ut, y). 

If we set x’ = x - vt and look for steady state solutions, we obtain 

u = u(x, Y), 
2 

!2+vau+!k=a 

ax ay* 

3U 

T& Iy=o=f(u)9 

824 

au y=, 
= 0, 

u(--co, Y) = 0, 

ut+% Y> = 1, 

where we have written x instead of x’ for simplicity. 

(1.1) 
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As in [4] a one-dimensional approximation can be obtained by integrating (1.1) 
from y = 0 to y = 1, obtaining 

u = u(x), 

~+l$=f(u), 
U-2) 

u(--co) = 0, 

u(+oo) = 1. 

The numerical method described in this paper is designed to solve numerically both 
(1.1) and (1.2). A computer code implementing the method is described in [2]. This 
code has the name QUENCH, and for ease of reference we refer to the numerical 
method itself with this name. The method is extremely efficient. For example, one 
problem which required 15 min of CDC 7600 time with the method in [5] requires 
only 1 set with QUENCH for equivalent accuracy. 

2. THE NUMERICAL METHOD 

The numerical method uses the idea of isotherm migration [5,3], which is to 
change variables in (1. l), writing w(u, y) = @u/ax)(x(u, y), y) and z(u, y) = 
(au/ay)(x(u, y), y). Then (1.1) transforms to 

w~+w+z~+~=o. au ay 
(2. la) 

A second equation can be obtained from the condition that 82u/axay = a2u/ayax 
which holds in the interior; this yields 

+wE+aw=, 
au ay 

The boundary conditions transform to 

z(u, l)=O, 

z(u, 0) = f(u), 

and under the assumption that (au/ax)(-00, y) = 0 = (au/ax)(+oo, y) we also have 

w(O, Y) = 0, 

w( 1, y) = 0. 
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The motivation behind this change of variables is threefold. First, the infinite region 
is traded for a finite region. Second, the nonlinear boundary condition is traded for a 
linear boundary condition. Third, dealing with u as an independent variable instead of 
x provides the possibility of using a much smaller number of mesh points for 
equivalent accuracy. The price for these simplifications is greatly increased 
complexity in the differential equation. 

Before proceeding with the description of QUENCH, we wish to describe how this 
use of isotherm migration differs from that in [5]. In [S] the following equations were 
derived 

The relationship 

-x, = {w[ 1 + (xy)2]u} -x,,. P-2) 

was exploited to alow (2.2) to be written in terms solely of derivatives of x. In [5], 
(2.2) was solved to steady state by an explicit method in time; at steady state xI = u. 
This partially explains the inefficiency of [5]. One could presumably set x, = v in 
(2.2) and solve the resulting equation efficiently. We prefer the equations (2.1), 
however, because they are written directly in terms of w  and z. The boundary 
conditions for w  and z are natural; such was not the case for the boundary conditions 
for x in [5]. The resemblance of (2.1) to the Cauchy-Riemann equations also seems 
attractive. 

Since (2.1) resembles the Cauchy-Riemann equations it seems reasonable to 
approximate it by writing difference equations on a staggered grid. The grid is shown 
in Fig. 1. Note that it has a border of fictitious cells. A typical cell with the location 
of the II% and Z’s is shown in Fig. 2. At the left and right boundaries, this storage is 
modified somewhat. For example, at the left boundary, it is as is shown in Fig. 3. For 
the purposes of exposition we assume to begin with a uniform mesh with mesh 
spacing du and dy. A difference scheme approximating (2. la) on the (i, j)th cell is 

+ $((e;,j(z)zi,j + (l - ~~,j(z))zi+l,j) - (“l,j-*(z)zi,j-l 

+ (l -e,-,,j-*(z))zi-l,j-l))=o, (2.3a) 

where 

eF,j(z>= 1’-.125dY(zi,j+zi,j-I +Zi+l,j+Zi+l,j+l)/dU if j<Jl 

= 1.-.25d~(Z,,~ + Zi,j-,)/~u if j=Jl 
(2.4a) 
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Of,,(Z)& 1.-.125dy(z,,j+zi,j-l +zi-l,j+zi-l,j-l)/du if j>2 

= l*-*25dy(Zi,j + Zi,j_l)/dU if j= 2. 
(WI 

The differencing of w(&v/au) + VW is obvious. The differencing of z(az/au) + (a~/@) 
is less obvious and is explained below. The second equation (2.1 b) is approximated 
by a difference equation at the interior cell corners: 

-+ i+ 1.i + ‘Lj) 4~~ A- tw*+l,j+l + wi+l,/- wi-l.j+l - wi-l,j) 

- + (W,,j + Wt,j+ 1) & (Z,+ 1.j - Z,J) + 5 (Wt../+ 1- Wi.j) = 0. (2*3b) 

The boundary conditions are 

Z -0 i,Jl - 9 2<i<I1, 

zi,l = fW(i - 4)), 2<i<I1, 

wl,j = O = w*l,j9 2<jgJ1. 

It is straighforward to check that the number of equations at cell centers and interior 
cell corners is the same as the number of unknowns, including V. In this regard it 
should be noted that Z is zero along the lines u = 0 and u = 1 since z = &+y. 

Let us give first a brief description of the way (2.3) is solved by QUENCH. The 
method always begins by attempting to solve the following one-dimensional difference 
equation approximating (1.2): 

f(wi + wi-l)(wi- W,-*)/AU + v+(Wi+ Wi-I)=-f((i-f)du)v 

w, =o= WI,. 
(2.5) 

If (2.5) is solved successfully, then one chooses a dy according to a criterion 
described below, scales W and V by W c W/(dy) “‘, Vt V/(dy)“* and then attempts 
to solve (2.3a) with only one y interval. The method then starts adding on y intervals 
and solves a sequence of two-dimensional problems. The method stops under one of 
four conditions: (i) too many iterations have been performed, (ii) the V obtained on 
the current mesh is “close” to the V obtained on the last mesh, (iii) storage 
requirements have been exceeded, or (iv) the current mesh has enough y intervals to 
reach y= 1. 

We now discuss the above in more detail. For the one-dimensional problem (1.2), 
both (1.2) and (2.5) can be solved exactly if 
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v > 0 is given by 

u* u*=Bc 
1 -u, (2.7) 

and w  is given by 

w(u) = 0 -a u if u O< u < u, 
c (2.8) 

= u(1 -u) if u,<u< 1. 

In its simplest mode, QUENCH assumes f to be piecewise linear and the last piece to 
be identically zero; the latter can be shown to be sufficient for existence of a unique 
solution of (1.2). One speciljes f by specifying the number of breakpoints NBKP off, 
counting 0 and 1; the breakpoints BKP(Z), Z = l,..., NBKP off, the slopes B(Z) off, 
z = I,..., NBKPl = NBKP - I; and FLP(Z) =f(BKP(Z+)), Z = l,..., NBKPl, i.e., the 
limits off as BKP(Z) is approached from the right. One also specifies V and NZND, 
which specifies u, in (2.8) to be BKP(NZND). The method then guesses W according 
to (2.8). As noted earlier iff satisfies (2.6) and I/ satisfies (2.7), then W is the exact 
answer. For more general piecewise linearfs, one can only hope that this procedure 
provides a good guess for W and V, at least for the test problems we have tried it 
always has. For j’s more general than piecewise linear, one needs to use enough 
intervals thatf is well approximated by a piecewise linear function on those intervals. 

The importance of the initial guess, of course, is that (2.5) is to be solved by 
Newton’s method. If we linearize (24, then given W and V we need to solve for WP 
and VP given by 

f(WPi+ WPi-,)(wi- Wj-,)/dU +i(Wi+ wi-,)(WPi- WPi-,)/dU 

+ VPi(Wi + Wi-*) + V;(WPi + WPi-1) 

=f(Wi+ Wi-l)(Wi- Wi-,)/AU ++V(Wi+ Wi&l)* 

This system can be solved directly for (WP, ,..., WP,, _ i, VP); in fact, the solution is 
efficient since the matrix is a lower triangular bidiagonal matrix except for the last 
column. 

For the model f given by (2.6) it has been observed that the larger B is the more 
the solution of (2.3) tends to be a boundary layer near y = 0. That is, for large B’S, W 
and Z are effectively zero outside a narrow band around y = 0 [ 51. Such a problem 
needs a dy small enough to resolve this layer. The appropriate dy can be so small 
that to solve (2.3) on the whole region (0, 1) x (0, 1) would be prohibitively 
expensive. This consideration motivates the idea of solving (2.3) on a sequence of 
regions (0, 1) x (0, y,), obtaining a sequence of V’s, say v’, and accepting V’ as the 
answer when 1 v’ - I’-’ 1 (1 - yi)/(yi - yi- i) < .l v’. Thus QUENCH is designed to 
solve to 10% accuracy in V. 
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The question remains of how to choose dy. In [5] a similar procedure was 
employed, and the dy derived there had to satisfy 

4 < 42/maxf(u)); (2.9) 

this was a natural condition arising from the difference scheme employed in [5]. The 
first difference scheme employed in QUENCH to approximate z az/au + az/@ was a 
straightforward conservative differencing and gave good results aside from the fact 
that there was no obvious criterion to choose dy. This latter failure motivated using 
the scheme (2.3) with 

e,,, = fqj = gj = 1.-.25dy(z,,j + z,,j&4u; 

this scheme is in the spirit of [S] and in effect differences z az/&i + az/& by 
differencing u,,,, in the (x, y) coordinate system. Thus the O,,j’s are interpolation coef- 
ficients for interpolating between Z,,j and Zi+ i, j and between Zi,j-l and Zi-l.j-l. 
The condition that 0 Q B,,, < 1 yields the preceding restriction on Au since in the 
continuous problem (l.l), z assumes its maximum value at y = 0. With the ei,j’S 
defined this way, the differencing is not conservative; however, by averaging as in the 
definition of e;,, and Sf,j in (2.4), the differencing becomes conservative. 

If the method solves the one-dimensional problem (2.5) successfully, it chooses Av 
according to (2.9); it then scales the answers by WC W/(dy)“*, Vt V/(Ay)“’ so as 
to provide the answer to (2.5) with f replaced by fldy. Then the method solves (2.3a) 
with one y interval with the same algorithm as for (2.5). If this is successful, the 
method begins adding on y intervals, guessing values for the new IV’s and Z’s and 
attempting to solve (2.3) by Newton’s method. The linearized systems are now no 
longer efficient to solve directly and one must have recourse to an iterative method. 

The iterative method is a variant of distributed relaxation [6]. For a general 
system Ax = 6, point distributed relaxation relaxes equation i, c a,Xj = bi by 
forming XT + ’ = XT + aij 6, where one solves for 6 by requiring that the residual is zero 
when x”’ ’ is substituted for x in the ith equation. One can generalize ‘this notion by 
relaxing several equations simultaneously (in the spirit of block relaxation). If Z is the 
set of indices of equations to be relaxed simultaneously, then one forms x7+’ = 
xj” + CiE, a,j 6, so that x”+ ’ substituted for x satisfies the ith equation for all i E I. 

Since dy is usually much smaller than Au, it is appropriate to use line distributed 
relaxation by lines in y, that is, to satisfy (2.3a) for a whole column of cells (i, j), 
j = 2,...,Jl at once. This gives rise to a linear system to solve for each i. The linear 
system is of the form 

(T+A)6= r, (2.10) 

where T is tridiagonal, 6 = (a*,..., 8,- ,)’ and (A)j,k =pjpk, where /Lj = 
i( B$ + II$- ,,j). This system can be solved efficiently by defining a,, = JJ-Jilpj Sj 
and rewriting (2.10) as 

58 l/39/2- I2 
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(2.11) 

The matrix in (2.11) is a bordered tridiagonal matrix and can be solved efficiently. 
A similar line relaxation scheme is used for (2.3b), giving rise in this case to only a 

tridiagonal matrix. Since only 10% accuracy in V is asked for by QUENCH, these 
relaxation schemes are relatively inexpensive. For more accuracy in V it is probably 
desirable to convert QUENCH into a multigrid code. 

A final detail concerning the relaxation schemes is that a slight cheat is used for 
the relaxation on the linearized systems of (2.3a). In the distributed relaxation, the 
contribution O;,JZ + 6)Zi,j, etc., is ignored, since its inclusion would give rise to a 
bordered pentadiagonal matrix to solve, the assumption being that any improvement 
in convergence rate would be more than offset by the additional work required. 

Let us comment on why conservative differencing is desirable for this problem. 
Note from (2. la) and integration by parts that 

J-fWdu 
’ = J”( w du dy ’ 

(2.12) 

Since the difference scheme (2.3) is conservative the V and W obtained from it satisfy 
a discrete version of (2.12). Because of the way zz, + zY is differenced, however, the 
discrete approximation to j” f(u) du is a nonstandard one. In fact, we have found the 
quantity 

(2.13) 

to be a more accurate approximate to v. 
Let us remark on the unequal interval provision of QUENCH. This provision is 

provided for flexibility; since best results are obtained when there are meshpoints at 
the breakpoints off, it is clear that unequal intervals are necessary to satisfy this 
constraint and yet keep the number of intervals small. When unequal intervals are 
allowed to change length sufficiently slowly, QUENCH apparently performs as well 
as in the equal interval case if the interior breakpoints off are greater than about .l 
and less than about .9. Otherwise, performance is unfortunately degraded. An 
example is given in Section 4. 

Finally; let us remark that QUENCH will handle an equation more general than 
(1.1); indeed, it allows for the equation 

v * (k(u) Vu) + vq(u)u = 0. 
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4. NUMERICAL EXAMPLES 

In this section we present several examples of problems worked with QUENCH. 
To describe the problems, we list the input variables, the definitions of which are as 
follows: 

NBKP 

zsw 

TOL 

WMAX 

D 

V 

BKP 

B 

FLP 

NUO 

NZND 

UMP 

Number of breakpoints in piecewise linear f, counting 0. and 1. 

IS W = 0 for unequal intervals. IS W = 1 for equal intervals. 
TOL is the relative tolerance in the solution of the linearized systems. See 
also WMAX. TOL = .Ol is recommended unless a negative Z or W is 
obtained as an answer. One case where this can happen is when there is an 
interior breakpoint BKP(Z) off satisfying 0. less than BKP(Z) less than .l 
or .9 less than BKP(Z) less than l., in which case TOL = ,001 is recom- 
mended. 

WMAX is the maximum number of iterations. For each linearized problem 
the code will iterate until the discrete L2 norm of the residuals is less than 
V * TOL or until the number of iterations exceeds WMAX. 

D = 0. means solve only the one-dimensional problem. D = 1. means solve 
the two-dimensional problem. 

V is the initial guess for the velocity. See remarks below on how to 
choose V. 

BKP is the array of breakpoints off: BKP( 1) = 0. and BKP(NBKP) = 1. 
must be specified. 

B is the array of slopes of5 B(NBKP-1) = 0. must be specified. 

FLP is the array of values off (BKP(Z)+), i.e., the limits off as BKP(Z) is 
approached from the right. FLP(NBKP-1) = 0. must be specified. 

NUO = number of u intervals between 0. and 1. 

NZND = index of breakpoint to be used in initial guess routine. 

UMP(Z) = values of U at Zth meshpoint. For best results it is recommended 
that there be a meshpoint at each of the breakpoints off: In the equal 
interval case this array is computed by QUENCH and is UMP(Z) = 
(I- l)/NUO. In the unequal interval case the array must be input. 

The procedure we use for choosing an initial guess for V is to exploit the fact that 
for f of the form (2.6), the one-dimensional problem can be solved exactly. For a 
general f, the procedure is to try to tit f with an f of the form (2.6) and guess V using 
the formula (2.7), where in this case u, is taken to be UMP(NZND). The initial guess 
routine then guesses W as in (2.8) and then attempts to solve the one-dimensional 
problem. QUENCH then chooses a mesh spacing in y, HY, which is printed, and 
proceeds to solve (2.3) on a sequence of regions (0, 1) x (0, y,) as described 
in Section 2. For each member of the sequence, QUENCH arrives at a V and 
a VZNT, the latter being obtained by (2.13). For problems in which we have 
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answers by other methods, VZNT appears to be more accurate. When 
1 v’ - v’- ’ 1 (1 - yr)/(yi - yi- J & .l v’, QUENCH terminates and accepts the last 
VZNT as the velocity. The final IV’s and Z’s are printed out. A warning is printed out 
if any of these are negative, in which case the answers should be viewed suspiciously 
since w  and z can be proved to be nonnegative. A possible remedy is to run the 
problem again with a smaller TOL or a refined u mesh. 

For each problem we give a history of the run, giving data for each region 
(0, 1) x (0, yJ. (Actually, to save space, a complete history is given only for the first 
example.) JJ is the number of y intervals, WU is the number of iterations, ERR 1 and 
ERR2 are the discrete L-2 norms of the residuals of (2.3a) and (2.3b), respectively. V 
is the computed velocity and VZNT is the integral approximation (2.12) to the 
velocity. JJ = 3 is the one-dimensional problem and is given twice, once with the 
vertical mesh spacing HY = 1. and once with HY equal to what the code chooses. We 
also give CDC 7600 C.P.U. times with the caution that since these problems were 
run in a time-sharing environment, they should be interpreted in only a relative sense. 
We also use the shorthand 3.2, -1 to indicate, e.g., 3.2 x 10-l. 

EXAMPLE 1. 
f(u) = 22.05u, if uG.5, 

= 0, if u>.5. 

Input data: NBKP=3, ZSW=l, TOL=.Ol, WMAX=lOO., D=l., V=3.32, 
BKP(l) = O., BKP(2) = .5, BKP(3) = l., B(1) = 22.05, B(2) = O., FLP(1) = O., 
FLP(2) = O., NUO = 6, NZND = 2. 

JJ WU ERR1 ERR2 V VZNT 

3 1. l., -3 0. 3.32 3.32 
3 2. 1.78, -1 0. 17.4 20.8 
4 14. 1.41, -1 2.46, -2 12.9 15.5 
5 7. 1.28, -1 2.96, -2 10.9 13.1 
6 6. 6.26, -2 5.05, -2 9.72 11.8 
8 9. 8.53, -2 3.99, -2 8.47 10.3 

10 10. 7.36, -2 4.08, -2 7.85 9.57 
13 13. 5.98, -2 3.78, -2 7.39 9.01 
17 14. 6.92, -2 4.46, -2 7.16 8.74 
22 12. 6.78, -2 3.58, -2 7.11 8.68 

CPU time = .578 set, HY = 3.0303 . . . . -2. Note that VZNT agrees favorably with the 
value given in [ 1 ] of 8.409. 

Also in this example we consider 

f(u) = 1024.Ou, if uG.5, 
= 0, if u > .5. 

The input data is the same except that B(1) = 1024., V= 22.62. 
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JJ WU ERR1 ERR2 V VINT 

3 1. 1.35, -1 0. 22.6 22.6 
3 3. 1.16, -1 0. 8.10, 2 9.71, 2 
4 21. 6.97,O 1.22,o 5.97,2 7.19,2 

66 66. 3.37,o 1.72,O 3.38,2 4.13,2 
88 87. 3.37,o 1.55,o 3.38,2 4.13,2 

CPU time = 7.074 set, HY= 6.5104, -3. Asymptotic analysis [9] gives 390. for 
this problem, while [7], which works only for j’s of this specific form, gives 
380. f .035. Thus QUENCH solves to 10% accuracy in v with six uniform u 
intervals even for this harder problem. 

EXAMPLE 2. 

f(u) = 22.05u, if uG.5, 

= 11.025 - 36.75 (u - .5), if .5<u<.8, 

= 0, if u > .8. 

Input data: NBKP=4, ISW=O, TOL = .Ol, WMAX= lOO., D= l., V=3.32, 
BKP( 1) = O., BKP(2) = .5, BKP(3) = .8, BKP(4) = I., B( 1) = 22.05, B(2) = -36.75, 
B(3) = O., FLP(1) = O., FLP(2) = 11.025, FLP(3) = O., NUO = 7, NZND = 2, 
UMP(1) = O., UMP(2) = .1666, UMP(2) = .3333, UMP(3) = .5, UMP(4) = ,65, 
UMP(5) = .8, UMP(6) = 1. 

JJ wu ERR 1 ERR2 V VINT 

3 4. 1.96, -6 0. 5.17 5.7 
3 3. 5.22, -4 0. 28.3 30.6 
4 63. 2.58, -3 3.05, -4 22.0 23.9 

s 44. 1.72, -3 6.55, -4 17.7 19.4 
10 46. 1.68, -3 7.05, -4 17.6 19.2 

CPU time = .811 set, HY = 3.448276, -2. This example illustrates two features: a 
general piecewise linear f and the nonuniform mesh option. 

EXAMPLE 3. 

f(u) = 22.05u, if u & .8333, 
= 0, if u > .8333. 
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Input data: NBKP= 3, ISW= 1, TOL =.Ol, WMAX= loo., D= l., V=9.58, 
BKP( 1) = O., BKP(2) = .8333, BKP(3) = l., B( 1) = 22.05, B(2) = O., FLP( 1) = O., 
FLP(2) = O., NUO = 12, NIND = 2. 

JJ WU ERR1 ERR2 V VZNT 

3 1. 9.3, -3 0. 9.59 9.59 
3 2. 2.00,o 6.37, -2 98.0 103. 
4 54. 9.69, - 1 1.64, -1 76.2 79.6 

li, 19. 5.84, -1 1.65, -1 57.7 60.9 
13 23. 5.64, -1 1.82, -1 57.8 60.9 

CPU time = .910 set, HY = 9.0909 . . . . -3. It is interesting to compare this with a run 
using a nonuniform grid for which the input data is the same as above except that 
ZSW= 0, NUO = 7, and UMP(1) = O., UMP(2) = .2, UMP(3) = .4, UMP(4) = .6, 
UMP(5) = .75, UMP(6) = .8333, UMP(7) = .9166, UMP(8) = 1. 

JJ wu ERR 1 ERR2 V VZNT 

3 1. 7.83, -3 0. 9.58 9.59 
3 2. 7.07, -2 0. 95.1 100. 
4 51. 9.38, -1 1.49, -1 74.4 77.7 

10 7. 5.65, -1 8.69, -1 56.7 60.0 
13 18. 5.39, -1 1.41, -1 56.9 60.1 

CPU time = .547 set, HY = 9.615385, -3. Note that the VZNTs agree well with each 
other and with the value of 63.22 in [l]. 

EXAMPLE 4. 

f(u) = 22.05u, if u < .98, 
= 0, if u > .98. 

Input data: NBKP = 3, IS W = 0, TOL = .Ol, WMAX = lO,OOO., D = 1, V = 32.54, 
BKP(1) = O., BKP(2) = .98, BKP(3) = l., B(1) = 22.05, B(2) = O., FLP(1) = O., 
FLP(2) = l., NUO = 14, NIND = 2, UMP(1) = O., UMP(2) = .2, UMP(3) = .4, 
UMP(4) = .6, UMP(5) = .7, UMP(6) = .76, UMP(7) = .82, UMP(8) = .88, 
UMP(9) = .92, UMP(l0) = .94, UMP(11) = .96, UMP(12) = .97, UMP(13) = .98, 
UMP(14) = .99, UMP(15) = 1. 

For this problem QUENCH goes out to JJ = 13 with HY = 9.3 10987, -4 and 
obtains an answer of 8.48, 2 in 4.5 sets. However, the last Z obtained is negative, for 
all y, giving a warning that TOL is too large. When TOL is decreased to .005, this is 
still the case, V now being 7.29,2, obtained in 10. sec. (In this case QUENCH goes 
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out to JJ= 17.) When TOL is decreased further to .OOl, the following results are 
obtained. 

JJ WU ERR 1 ERR2 V VZNT 

3 1. 1.36, -2 0. 32.5 32.5 
3 2. 2.94, -3 0. 1060. 1070. 
4 5 140. 1.06, -1 1.49, -2 823. 827. 

17 30. 6.61, -1 6.11, -1 666. 669. 
22 47. 6.55, -1 5.44, -1 665. 670. 

CPU time = 25.8 set, HY = 9.3 10987, -4. Hence, although the calculation is quite 
costly, the agreement with the value of 649.1 in [ 1 ] is good. 

EXAMPLE 5. 

f(u) = 156 u4, if u < .666, 
= 0, if u > .666. 

Input data: NBKP= 3, ZSW= 1, TOL = .Ol, WMAX= lOO., D= l., V=4.92, 
BKP(l) = O., BKP(2) = .666, BKP(3) = I., B(1) = 156., B(2) = O., FLP(l) = O., 
FLP(2) = O., NUO = 24, NZND = 2. 

This, of course, is an example of an f which is not piecewise linear. 

JJ WU ERR 1 ERR2 V VZNT 

3 3. 3.61, -2 0. 6.1 6.1 
3 2. 4.77, -2 0. 213. 217. 
4 77. 2.08, -0 9.52, -2 153. 155. 

66 32. 3.35, -1 8.38, -2 33.3 34.0 
88 37. 3.21, -1 7.44, -2 30.9 31.5 

In [8] a value of 25. is obtained for a nearby problem (BKP(2) = .677) and in [9] a 
value of 30. is obtained. 

EXAMPLE 6. 

f(u) = 22.05u, if u Q .5, 
= 0, if u > .5. 

k(u) = 1 + u, q(u) = 1 + u. Input data: NBKP= 3, ZSW= 1, TOL = .Ol, 
WMAX=lOO., D=l., V=3.32, BKP(l)=O., BKP(2)=.5, BKP(3)=1., 
B(1) = 22.05, B(2) = O., FLP(l) = O., FLP(2) = O., NUO = 6, NZND = 2. 
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JJ WU ERR1 ERR2 V VINT 

3 16. 3.17, -2 0. 3.88 3.89 
3 8. 2.13, -1 0. 20. 24.8 
4 12. 1.96, -1 3.24, -2 14.7 18.4 

17 14. 7.28, -2 4.69, -2 7.63 10.3 
22 17. 6.78, -2 4.21, -2 7.46 10.2 

CPU time = .63 set, HY= 3.0303 . . . . -2. 
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